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Abstract  

An approximate solution to the electromagnetic boundary value 
problem consisting of a horizontal cylindrical conductor buried in 
a lossy half-space and excited by an  arb i t rar i ly  oriented magnetic 
dipole is found using an  iterative perturbation technique in a double 
Four ier  t ransform space. This model i s  used to gain insight into 
the anomalous fields due to strong sca t t e re r s  such a s  pipes o r  t racks  
which would be in close proximity to a n  EM mine rescue  operation. 
The novel,  three-dimensional aspect  of the problem (i. e. , the source)  
imposes the complexity that the current  in the cylinder is not uniform. 
The field expressions a r e  ideally suited to evaluation using F F T  
algorithm. 

The electromagnetic response of a n  inhomogeneous half-space 
continues to be a subject of high in teres t  because of its d i rec t  
application to E M  prospecting techniques, mine rescue  operations, 
and location of buried gas o r  water pipes. By in large,  with the 
notable exceptions d D'Yakonov (1959), and Hill and Wait (1973), 
the theory applied to this c lass  of problems has been res t r ic ted  to 
two-dimensional t ime harmonic analyses. For  example, the February  
'71 issue of Geophysics was devoted entirely to numerical solutions 
of this type. The comparatively simple sub-case consisting of an  
idealized buried cylindrical inhomogeneity has a lso  received considerable 
attention (D' Yakonov (1959), Wait (1972), and Howard (1972)). We 
comment that D'Yakonov published no numerical resul ts ;  the approximate 
iterated perturbation method due to Wait, which accounted for  the 
interaction of the a i r  -ear th  interface and the induced axial monopole 
cur ren t  i s  readily evaluated. Numerical resul ts  based on Wait's 
method have been shown to be in complete agreement  with the integral 
equation solution of Howard (1972). All three of these solutions a r e  
two-dimensional since the pr imary  excitation in each case  i s  taken 
to be a uniform line current  parallel  to the cylinder. 

Herein, we consider a three-dimensional extension of these 
solutions. That the extension i s  non-trivial is attested by the effort 
involved in considering such problems in the absence of the a i r -ea r th  



interface (Wait, 1960). Thus, the uniform line source is replaced 
by a more  r e a l i s t i c  a rb i t rar i ly  oriented magnetic dipole in the 
earth. This introduces severa l  complications. The most  ser ious 
a r e  that we now need a two-dimensional t ransform representation 
and the problem is now intrinsically vector. The vector nature 
requi res  either the introduction of both electr ic  and magnetic potentials 
(Wait (1 958), Weaver (1 970)) o r  the appropriate Green's function dyadic 
(Tai  (1 97 1)). For  an  a rb i t r a ry  cylinder, the relevant two-dimensional 
Four ier  integral dyadic can be used with a vector integral equation 
formalism. It i s ,  under certain conditions, permissible  and much 
simpler  to by-pass the integral equation technique and use  a perturba-  
tion analysis. 

Thus, to keep the problem tractable,  we will a s sume that the 
cylinder is perfectly conducting and electrically small  so  that only 
a n  axial surface current  density has appreciable excitation. This 
allows us  to perform a perturbation analysis s imi lar  to that of Hill 
(1970) and Wait (1972) to obtain a n  iterated approximant of the axial 
surface current .  Note that in so  doing, the features of an a i r -ea r th  
interface and a n  arb i t rar i ly  oriented magnetic dipole a r e  not compromised. 
Hence, the problem remains  three -dimensional; however, the s im-  
plifying a s  sumptions divide the problem into three  almost  completely 
independent par ts  - each one of which is  a wel l -def i~ed boundary 
value problem. 

As an  overview, we give in section two a two-dimensional 
Four ier  integral representation of the magnetic loop .in a half - space. 
With an  eye to the application of this "incident" field, we represent  
the resulting interface fields in t e r m s  of magnetic and electr ic  vector 
potentials paral lel  to the cylinder axis which is introduced in the follow- 
ing step. In the th i rd .  section, we obtain the zeroth order  surface 
current  on the cylinder which includes the "over and down" mode 
coupling. This is  done for  one spectral  component of the incident 
field - i. e . ,  a n  arb i t rar i ly  polarized plane wave constituent. 

Then, in the fourth section, we obtain the interface dependent 
potentials for a given axial surface current.  It then becomes a straight- 
forward matter  to i terate  the correct ion to the surface current  starting 
with the zeroth order  current  obtained in the previous section. The 
anomalous fields a r e ,  of course,  written in t e r m s  of the potentials 
derived in section four. 

I I. Two-Dimensional Four ier  Integral Incident Field 



Here we consider the well-known problem of a magnetic dipole 
in a half-space. Our application, however, requires us to look a t .  
the problem afresh. The geometry i s  given in Figure 1. 

Figure 1. Scattering geometry. 

Our solution is not standzrd in that for numerical reasons, it is 
preferable to use Cartesian coordinates, and the potentials a r e  
conveniently chosen parallel to the cylinder axis. We require a 
solution then to 

- - 
by way of the potentials F and A , i. e., 



- 
F o r  a n  elementary magnetic dipole, M i s  given by 

n 

Now for a homogeneous space A = 0 and 

This, in the representation required, i s  a l so  written 
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The pertinent solution i s  
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where 



111. Zeroth Order  Surface Current  

We now consider the interaction of a plane-wave constituent 
of the previous section with the cylinder surface current.  Basically, 
we require a t ransverse  vector cylindrical wave expansion of a 
 lane wave constituent of the "incident" field. 

The M and N functions a r e  orthogonal; i t  i s  easy  to solve (3. 1) 
for  an  and bn. Now again we match boundary fields, this t ime a t  
the cylinder surface. Thus let  

and one finds 

The surface current  in amperes /mete r  on a perfectly conducting 
body is proportional to the total magnetic intensity H , i. e . ,  

This condition yields the zeroth order  transformed axial  surface current  
density - 
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where 

Hence (3.5) becomes 



Define 

Note that Kxl is  the interface independent zeroth order  axial 
surface cur ren t  transform. The interface t e r m  Kx2 (Kx) i s  
unfortunately a numerical integral. 

- - . . ".. . . * . . .  , . - . - . . 

IV. Iterated Current  and Anomalous Fields - -- 

We now temporari ly a s sume the current  is known; i. e. , 

The excitation potential for  this section i s  thus 

Now, substituting (4. l ) ,  and G a s  given by (2. 5 )  into (4.2), and 
Q carrying out the spatial  integrations gives 

- - 
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Again, we now introduce potentials A*, F k  , match fields a c r o s s  
the interface and obtain in the quasi- static approximation 

Thus, the a i r -ea r th  interfzce to f i r s t  order  modifies the potential 



amplitude aO; it  becomes (1 + Q) a0 . In fact, the iteration is 
equivalent to a geometric ser ies  which formally can be summed 
to give a s  an infinite iterant a d / ( l  - Q) . Thus, the corrected - 
potential A is  given by 

and the surface current i s ,  f rom (3.4), 
2- 

It turns out that since Q i s  exponentially small for large 
KY' the averaging integral and the K integral do not commute; hence, 

Y 
we f i rs t  substract out the asymptotic limit to the integral (4.5) 
and add it  on in integrated form giving 

where 
m 
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An important limiting case of (4.8) is when d + m ,  then P +  0; 
i t  can be shown that the remaining t e r m  is then identical to the 
exact expression in the absence of the interface. Using the key result  
(4. 7), the anomalous magnetic field H in the lower half-space is 
given in terms of the potentials AO, A, and F- . 

where H0 depends on the interface only through the current (it 
corresponds to AO with iterated current (4.7)). In particular 

where 
00 

The H: t e r m  is given by A m ,  F- through (2.2). For  completeness 
these potential coefficients a r e  determined to be 



(4.11) 

This completes the formal solution to our problem. 
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